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Autocatalytic model of oscillatory zoning in experimentally grown (Ba, Sr) SO, solid solution
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Oscillatory zoning(OZ) is a phenomenon common to many natural minerals whereby the mineral compo-
sition varies more or less regularly from the core of the crystal to its rim. Oscillatory zoned barite-celestite
(Ba,Sr)SQ crystals are one of the very few examples of the OZ phenomenon that were obtained under
controlled laboratory conditions. It is known that such crystals can be synthesized by precipitation from an
aqueous solution during counterdiffusion in a gel column connecting two reservoirs. We present here a model
of oscillatory zoning in such a binary solid solution grown from an aqueous solution. By expanding on a
previously suggested model, we obtain oscillatory dynamical solutions for two limit cases: the growth of a flat
crystal face and the growth of a spherical crystallite. We consider an autocatalytic dependence between the
crystal growth rate and the crystal surface composition. The oscillatory patterns then arise as a kinetic effect
due to the coupling between the diffusion field around the crystal and the fast crystal growth under far-from-
equilibrium conditions. The effects of fluctuations in the aqueous solution concentrations are also considered.
It is shown that they may lead to noisy oscillatory patterns.
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I. INTRODUCTION latory zoning that have been reproduced in a laboratory are
the oscillatory patterns in the solid solution of barite

Many minerals exhibit oscillatory zoning, whereby the (BaSQ) and celestite (SrSf) synthesized by Putnis’s
composition varies inside the crystals in a nonmonotonic@roup[3]. Oscillatory zoned single crystals of barite celestite
fashion in the direction from the crystal core to its rim. For acontained up to ten zones, whereby Ba crystal composition
long time, oscillatory zoning was believed to be a rare pheswitched abruptly between roughly 25% and 90%. The typi-
nomenon, an anomalous case of mineral zoning. Howevegal zone width was about 7-1@m and the typical zoned
with the development of more sophisticated observatiorerystallites were about 150m in size.
techniques, it was shown that such zoning, in one form or In a series of experiments by Putnis’s grddp-6], barite
another, is found in many mineral classes and in a wid&nd barite-celestite solid solution crystals were grown from
range of geological environmer(ts]. Understanding the ori- an aqueous solution during counterdiffusion in a gel column
gin of the zoning is important, as it may provide information connecting two reservoirs containing the initial reactants
on the genesis of the mineral and the geological history of itéFig. 1). One month after the start of the experiment, the
host rock. For instance, in hydrothermal environments, icrystals were extracted from the gel and their morphology
may yield insights into the details of fluid-rock interactions. was studied by scanning electron microscopy. Various zoning

In many minerals, oscillatory patterns reflect variations intextures[4] corresponding to different initial reservoir con-
the geological environment at the time of mineral formationcentrations are listed here in Table I.

(so-called extrinsic mechanismHowever, other mecha- The experiment was conducted in a controlled environ-
nisms are possible. It is known that spatiotemporal patterngient and therefore many of the microscopic crystal growth
can arise spontaneously without external templates in nonlinparameters are known or can be estimated with sufficient
ear systems subjected to far-from-equilibrium conditins ~ precision. Nucleation and growth of the (Ba, Sr)S@ystals
trinsic mechanism In particular, reaction-diffusion systems from an aqueous solution have been extensively studied
have long since been known to hold potential for self-
organization2]. In the case of crystal growth under condi- B eati

tions far-from-thermodynamic equilibrium, a fast crystal | g nue ei“o“ zone Nez80
growth rate may provide nonlinear couplings between differ-| reservoir
ent dynamical variables, which is a necessary condition for,
self-organization.

In spite of widespread observations of oscillatory zoning
and a relative abundance of theoretical models used to ex
plain the pattern formation in various environments, the zon-
ing patterns have almqst never been obtallned under con- FIG. 1. Experimental setup, in which oscillatory zoned crystals
trolleq laboratory conditions in crystal nucleation gnd grovvthm (Ba,Sr)SQ were synthesized in Ref3]. The reservoirs contain-
experiments. One of the very few examples of mineral osciling the mother solutions are connected by a gel column 28 cm in

length. The reactants counterdiffuse in the column and (Ba,Sr)SO

crystals nucleate and grow in some regishown as grayinside
*Corresponding author. Email address: the column. After a month of growth, the crystals were extracted
ilheureu@physics.uottawa.ca and their morphology was studied by scanning electron microscopy.

reservoir

gel column

28 cm
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TABLE |. Experimentally obtained textures in (Ba,Sr)SOrhe crystal zoning experimental data are
taken from Ref[4]. The nucleation time is counted from the moment the solutions enter the gel column.
Zoning type notation: OZoscillatory zoningZ1=Ba-Sr-Ba, BA=barite, Z2=Sr-Ba-Sr.

Concentrations at Type Nucleation Core Nucl. Concentration at

the reservoirsvl;, M of locatiorf' y, composition  time nucleatiorf; m, mM
Ba/Sr/SQ zoning cm X 7, h Ba/Sr/SQ
0.5/0.5/0.5 0oz 13-16 0.90 288 7.7-1.4/6.8-1.2/1.4-8.7
0.5/0.5/0.3 0oz 15-18 0.90 312 3.6-0.6/3.1-0.5/4.0-17.1
0.3/0.3/0.5 oz 16 0.91 336 1.7/1.6/1%
0.3/0.3/0.3 Z1 13-15 360 9.0-3.7/8.2-3.2/2.4-6.4
0.5/0.5/0.1 Z1 17-20 0.88 384 3.0-0.6/2.6-0.5/5.9-17.0
0.3/0.3/0.1 Z1 18 0.89 408 1.6/1.4/24
0.3/0.1/0.1 BA 21 0.94 576 1.7/0.8/30
0.1/0.3/0.1 Z1 and 21 0.79 624 0.9/1.6/%1

Z2

8 ocation of the nuclei in the gel column is taken from R, where it was reported for the pure barite
case.

®The composition of the crystal core is assumed equivalent to the composition of the newly nucleated
crystallites. The corresponding data are taken from Rf.

“The concentrations at the nucleation site were calculated from(I&y. The range of the values given
corresponds to the range in the nucleation locagion

9The concentrations of B4 and SF* at the nucleation site at the nucleation time were taken from[REf.

The corresponding nucleation location and the concentration gf S®ere calculated using E16).

[5—8] and data are available for many of the important pa-ion of a spherical crystallite, the onset of oscillations is re-
rameters. Since the detailed information about the crystdated to the transition from an interface-controlled crystal
growth environment is almost never available for naturalgrowth regime to a diffusion-controlled growth, which oc-
minerals, constructing a model that would simulate the exeurs as the crystallite size increases. In addition, reasonably
perimentally observed oscillatory zoning is an important stegmall fluctuations in the bulk concentrations of the compo-
towards understanding natural oscillatory zoning. nents are shown to facilitate large-magnitude dynamic tran-
In this paper, we suggest an autocatalytic model of oscilsitions between the compositional ranges and thus enlarge
latory banding in (Ba,Sr)SQcrystals, which extends the the parameter range in which oscillatory zoning can be
previously suggested model of L'Heureux and Jamt{@jt  achieved.
In that work, the autocatalytic crystal growth of a flat crys- The paper is organized as follows. First, the model is
tallite surface and the diffusion of the components in thepresented and its steady-state solutions are discussed. Then
solution around the crystal were described in terms of partialhe numerical results are presented. After that, the model is
differential equationdPDE9. The model was then reduced reduced to a set of ODEs in the approximation of a spherical
to a set of ordinary differential equatiof®DES by intro-  crystallite and a linear stability analysis of the resulting sys-
ducing a boundary layer approximation. Linear stabilitytem of equations is performed. The reduced system is then
analysis of those equations and their direct numerical solusolved numerically. Finally, the effect of noise on the full
tion demonstrated the existence of oscillatory solutionsPDE model is considered and the results are summarized. An
Here, the numerical solutions to the original set of PDEs ar@ppendix completes the paper.
obtained for two limit cases: the one-dimensional growth of
a flat crystal face and the growth of a small spherical crys-
tallite. Also, a reduced model for the growth of a spherical

crystallite is considered, which allows us to perform a more e consider the growth of (Ba,Sr)$@rystals from a
complete linear stability analysis. The effects of fluctuationssp|ution in the setup shown in Fig. 1. We are not interested in
in the crystal growth environment on the oscillatory patternthe nucleation phasg8] and therefore consider only the
formation are also considered in this paper. Although theyrowth process for a previously nucleated crystallite. The

specific case of (Ba,Sr)SQs illustrated here, the mecha- growth proceeds according to the precipitation reactions
nisms described in this paper are general and could be ap-

plied to other solid solutions grown from an aqueous solu-
tion.

In our model, the oscillatory solutions are obtained as a
result of nonlinear coupling between the kinetics of the mo-where both BaS@and SrSQ are incorporated in the same
lecular attachment processes at the crystal-solution interfacgystal to form a solid solution. The following symbolic no-
and the diffusion field around the crystal. In the approxima-tation is used in the description of the model below:

Il. MODEL

SO2 +B&"—BaSQ,, SO +SP'—Srsq,
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A=S0Q,°", B=B&", C=SP", BA=BaSQ, and CA m,
=SrSQ,. Since the growth layers of similar chemical com- D o +[m;(0) —¢i(1) V=0, (6)
position in the observed zoned crystals are parallel to the p=0

crystal faces, we first consider growth only in one dimension,ere , is the distance from the interface measured in the

in the direction perpendicular to the crystal face. We choose, ji5| direction angy’ is the distance from the center of the
a frame of reference moving with the growing crystal in SUChcrystaI If the initial nucleus has the sizg, then

a way thatx=0 always corresponds to the crystal-solution

interface. Thusx>0 corresponds to the space occupied by ) too
the aqueous solutions, whereas 0 is associated with the p ()=p(t)+ro+ fOV(t )dt’. (7)
space occupied by the crystal.

If m;(x,t) are the concentrationgnoles per volumeof It is convenient to describe the composition of the solid

the ions of species(i=A, B, or C) andV is the rate of the phase by the mole fraction of Ba$@ the crystalX(0=<X
crystal surface advancgength/time then the evolution of  <1). The relationship betweex andc; is then given by
the species concentration fields in the diffusion boundary

layer surrounding the crystal is given by the diffusion equa- X 1-X
tions B X T UcA(1—X)' T UgaXFvea(1—-X)
2 (8)
&mi Jd m; ami
ot i(97+ ox @D where vga and vca are the molar volumes of the solid
BaSQ, and SrSQ, respectively.
whereD; are the diffusion coefficients in the solutidas- The evolution of the crystal compositiofat the interface

sumed independent of the concentrati@nd the second is determined kinetically by the rat&g, andVc, at which
term is due to the choice of the coordinate system. Théhe units of BA and CA are attachedor detachefito the
boundary condition far from the growing crystal is naturally crystal surface. They can be defined as the rate of growth of

given by a flat crystal face consisting of pure Bagénd SrSQ, re-
A spectively, in meter per second. The total growth velocity is
m;(oe,t) =m;(t) (2 then[9]
wherefm;(t) are the bulk values of the concentrations at the V=Vgat+Vca- (9)

crystallization site that may depend on time due to the influx _ o _

of species from the reservoirs. In the experiments of RefgAs argued in Ref[9], it is useful to introduce another equa-
[3—6], the size of the grown barite-celestite crystallites wastion that describes the dynamics of the composikoacross
always much smaller than the dimensions of the gel columihe crystal-solution interface. Using mass balance across that
(1.2 cm in diameter, 28 cm in lengtiTherefore, the solution interface and assuming normal crystal growth mechanism,
in the gel at the nucleation site can be considered to haveve obtain(see the Appendix

locally, the same bulk species concentrations in all directions

around the crystallite. The continuity of the mass current at | , —= _ v/, — X(Vga+Veala) [ X+ (1—X)a]?,

the crystal-solution interfacex& 0) gives the second bound- dt

ary condition: (10
am where a=vca/vga=0.89 andL is the effective crystal-
Di— +[m(0t)—c;(t)]V=0, (3)  solution interface width which characterizes the roughness of
IX|y—o the interface. If the difference in molar volume is neglected,

o _ this equation reduces to
wherec;(t) denotes the molar concentration in the solid at

the growing front. It is clear from the stoichiometry that dXx
=cg+Cc. Also, for the case of crystal growth from a solu- L5t = Vea—XV. (13)
tion, ¢;>m; .

Since the above estimates suggest that a change in the the steady state, the crystal composition is thus kinetically
growth mechanism may occur as the crystal becomes largesiefined[10] asX=Vga/V.
an extension of the model to the case of a spherical crystal is The three equation€l) or (4) are coupled among them-
useful. By writing the diffusion equations for the species inselves as well as with Eq10) through the term containing
the solution in spherical coordinates and assuming growth ithe growth velocityV.

the radial direction only, equatior(4), (2), and(3) can be In general, the crystal growth rat¢ depends nonlinearly
transformed into on the concentrations in the solutiom,, mg, andm¢ near
) the interface. In the case of a continuous two-component
om0 2D am; Ly I (49 ~ growth of the crystal surface in contact with  dilute solution,
at ap®  p' dp ap’ the growth rate can be approximated by

mi(p—o0,t) = (1), (5) Vea= Bpa(Mgma—mgmy), (12)
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wherem? are the equilibrium concentrations in the solution voirs to be inexhaustiblévhich is a good approximation for
and Bg, is the kinetic coefficienf11] the experiment duration times smaller than one month and
for large reservoir concentratiorj§]) and neglecting the
Bea= aBAfuéA(aBA/&BA)2 exd —AUga/KkT]. (13 depletion of the solution due to crystallization, the time evo-

) ] o . lution of the aqueous concentrations at the crystallization site
Here, ag, is the size of a molecular building unit,is a s given by

frequency factory g 4 is the molar volume in the solidig 4 is
the average distance between kink sites on the growing sur-
face, andAUg, is the energy barrier for the incorporation of Mg c(t)=Mg cerfc
the building unit into the crystal. The factoags/dga)?
characterizes the probability of finding a suitable kink site on
the two-dimens.ional.surfa_ce_ of the crystal. The growth rate mA(t)=MAerfc( H-y ) (16)
Vca can be defined in a similar way. 2Da(t+7)
Attachment of the BaSpunits to the BaS@kink sites is
energetically favored over their attachment to the Sr&i@k  whereM; are the known concentrations of the componénts
sites because of the lattice misfit and because chemical bonth the reservoiry is the distance from the Bag5rCl, res-
ing is generally stronger between units of the same speciegrvoir to the nucleation siteii =28 cm is the total column
Thus the average distance between the favorable kink sitdgngth; andr is the nucleation time measured from the mo-
for the attachment of BaSQOss expected to decrease with ment the solutions enter the gel column. The location of the
increasing BaS@molar fraction in the crystal surface. The crystallization site y can be determined from the
simplest relation that mimics this dependence on the crystd$aSQ-SrSQ, nucleation experiments in the same experi-
composition i99] mental setup5s,6].
Equationg1) with the boundary condition®) and(3) do
(aga/0ga)*X+p1, (acal/dca)*1—X+py, (14  not have a steady-state solution. This is easily shown by
. ) . tentatively setting the left-hand side of the equation to zero
where the constants, , characterize the residual probabili- 5, integrating twice over the space coordinat® obtain

ties of finding a favorable kink site for the growth of BaSO \yhat would be the steady-state concentration distribution in
on a pure SrS@surface, and vice versa. The growth ratesihe solution,

then take the form

y
2VDB,C(t+ ’T)) ,

D; X
Vea= Bea(MgMa—mgmg) (X+p;)?, Mgt (X)=Cyi + V'ex;{ - m) Cyi- 17)

Vea= Bea(MemMa—memR) (1—X+p,)2, (159  The integration constan€;; can be obtained from the

N - i boundary conditior(2):
whereBga ca are new kinetic coefficients. For highly super-

saturated solutions, the product of the equilibrium concentra- Ciy=m;. (18
tions in Egs.(15 can be neglectefB]. This expression for N o
the growth rates thus describes the autocatalytic growth of 4he boundary conditiof8) does not allow the determination
two-component crystal. of the second integration constaD$; but leads tom; =cy,

The autocatalytic dependence of the growth rates on theshere Cs; are the steady-state molar concentrations in the

crystal composition provides the possibility of generating oS<yystal. The latter relation is impossible to satisfy for both Ba
cillatory patterns in the crystal composition by the following gng S at the same time because the concentration in the
qualitative mechanism. When the surface of a growing crysgojig phasec is always greater than the corresponding con-
tallite is rich in, say,B, the attachment oB units to the  centration in the aqueous solutiénfor at least one of these
crystal surface from the solution is energetically favored OVeGpecies.

the attachment o€. Thus, aB-rich crystal zone is formed A steady state may be achieved, however, if a diffusion
while the solution in the vicinity of the crystal is being de- poyundary layer of finite width is considered. If the boundary
pleted ofB and becomes enriched @ Eventually, aC-rich  ¢ondition (2) is taken not at infinity but at some finite dis-

layer will nucleate on the s_urface of tBerich crysta}l, which  tance from the interfack then the integration constaft,
causes further autocatalytic attachment of @enits from .5 pe obtained as

the solution and therefore a growth ofCarich crystal zone.
This, in turn, depletes the solution @& while diffusion R VDo
gradually increases the concentratiorBafintil nucleation of Cai=p- (M~ cs)e V) (19
B occurs and the cycle is thus repeated. '
To correctly simulate the crystal growth experiment in theand equatior(17) becomes
setup shown in Fig. 1, it is necessary to know the time de-
pendence of the bulk concentratiafsin the solution at the Mgy (X) = Cgy = (Cs; — ;) el VPl (20)
crystallization site. The evolution of the concentration pro-
files in the gel can be found analyticall@] by solving the By taking this relation ak=0 and expanding the exponent,
corresponding diffusion equations. Considering the reserthe boundary layer width can be obtained as
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D; m—m;(0) D; m,—m;(0) both inr and X, as verified numerically for a wide range of
v “m oV . (21 parameter values. This indicates that, under the current ap-
proximations, the steady-state solution is always stable.
a;J'herefore, oscillatory solutions or switching between steady
states are only possible when those approximations cease to
be valid, i.e., when the distortion of the diffusion field in the
Vv solution due to the changes in the crystal sizeconsidered.
m;(X)~m;(0)+ Csip. X (22 The pseudo-steady-state value of the composKiamob-
: tained by setting the left-hand side of the Efjl) equal to

While the current work does not rely on the above sim-Z€0- Using the approximatiof15) one obtains
plifications, the approximation®1) and (22) were taken in

Cs Cst

In this case, the concentration profiles in the solution ne
the crystal interface have an approximately linear form,

Ref.[9]. _Vea_ BeaMg(Xst p1)?
If, instead of linear growth in one dimension, the radial TV Beama(Xsit P1)?+ BeaMe(1—Xst p2)®
growth of a spherical crystallite is considered, then a pseudo- (25

steady-state solution can be obtained. If the diffusion field in

caused by the increase in the crystal size and the differenc[
in solid molar volume is neglected so théa=Vga/V in eq. the values in the set
(11), a pseudo-steady-state concentration profile in the solu-

tion can be obtained in the form X*={0,0.5, or 1. (26)
mi(p')~m — L f 23) These values correspond to pure S§S@ crystal compo-
P ' uvDjp"’ sition with equal proportions of Ba and Sr sulphate, or pure

BaSQ,, respectively.
where the steady-state growth ratgis eitherVg=Vga or The diffusion of the B&", SP*, and SQ?~ ionic species
Vc=Vca0rVa=VeatVea, I is the slowly increasing crys- in the gel is complicated by the electric interactions between
tal radius,p’=r is the distance from the center of the crystal, the ions in the solution. Far from the nucleation zone, the
andv is the molar volume. When the second term is smallbinary salt diffusion from the reservoitgig. 1) may be char-

the concentration near the crystal-solution interface is clos@cterized by the diffusion coefficients computed from the
to the bulk concentration value and the crystal growth occursyernst-Hartley relation

in the kinetic regime. However, as the crystal becomes
larger, diffusion starts to play a role. (z,+|z_|)D,D_

The pseudo-steady-state concentrations at the interface salt™ .D,+|z_|D_" (27
m;(r) are obtained as the solution of the system of equations
(23) taken atp’=r where the growth rate¥; depend on whereD . andD _ are the tracer diffusion coefficients for the
m;(r) through(15). If the solution concentration at the inter- cations and anions arm. andz_ are the respective charges.
face is not very different from its bulk value and the equilib- The overall electroneutrality of the solution is maintained by
rium concentrations in Eqs(15) are neglected then the the coupling between the cation and anion diffusions. Using

steady-state concentrations at the interface are ionic diffusion data for individual elemen{4.2], the binary
R o, diffusion coefficients can be obtained &BaCh)=1.39
Ma~Ma[1—Mgag—Mcac] X 1075 cn?/s, D(SrCh)=1.34x 10 ° cn¥/s, and
. A D(Na,SQ,)=1.23x 10" ° cn¥/s. In the nucleation zone, the
mMg~Mg[1—Maag], (24 diffusion phenomenon, in principle, is more complex as the
~ ~ diffusion coefficients in a system containing more than two
Mc~Mc[1—Maacl, ionic species become concentration depen@iEatand thus

their values change as the species concentrations evolve in
time. However, the Naand CI” ions that remain in solution
1 after the barite-celestite crystals precipitate should effec-
ag=r—Bpa(X+p1)?Dg, tively maintain the electroneutrality of the solution, so that
v the diffusion coefficients in the nucleation zone should not
be very different from the binary coefficients calculated

1
ac:r;ﬁ(:A(l_X‘sz)z/Dc, above.

where

IIl. NUMERICAL SOLUTIONS OF PDEs

1 1
- 2 = — 2 . . . . . .
ag=1—Bea(X+P1)/Da,  ac=r—(1=X+py)*/Da. The equations were nondimensionalized in the following

way. The concentrations), were scaled by a typical value
In the general case of arbitrary interface concentrationsn~5 mM=5x10"® mole/cn?. The solid phase concentra-
the pseudo-steady-state solution also exists and is continuotiens were scaled by the inverse molar volume of BaSO
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FIG. 3. Stability diagram for the full PDE model in one dimen-
FIG. 2. Linear stability diagram for the reduced model of Ref. sion. The stability of the steady state was determined numerically.
[9]. The corresponding parameter values &re=2, «=0.89, 8 For simplicity, heredg=dc=1, p;=p,=p, y=0, a=1, and B
=1, dg=0.79, dc=0.74, andp,=p,. The stability regions are 1 The horizontal boundary between the stable and unstable re-
denoted as follows: SF, stable focus; UF, unstable foBusaddle;  gions corresponds to the line between the SF and UF regions in Fig.
and SN, stable node. The bistability region extends below the The stability of the system for small values lofcould not be
dashed line in the diagram. Reprinted from Réf, with permis-  getermined because of the strong dependence on the width of the
sion from Elsevier Science. boundary layet, which appears in numerical simulations when the
concentration profile in the solution evolves on a spatial scale com-

=1/ gp=0.019 mole/cri. The growth velocity was scaled parable with the size of the simulation grid.

by a typical valueV~10"8 cm/s, which was estimated by _ o . o
dividing the typical crystallite size by the duration of the and solid phases iy=m/c=2.5x10"". Due to the finite
experiment_ The space coordinatevas scaled by the width grld sSlize, the bOUndary COﬂdItI((ﬁQ) is taken at the distance

of the diffusion boundary layer defined in Eq1): 1 | from the interface, which is of the order of

— D . /Ve~3 mm whereD . is the effective diffusion co- The nondimensionalized system of three partial differen-
efficie/?lt for SQ?~ DA=1.£3>< 1075 cn/s. This value of U@l éguations(28) alone with the boundary conditiori29)

the diffusion boundary layer width is consistent with the and (30) r_:md the ordlnfary dn‘ferent@l equa_ho@l) were
value obtained in Ref,13] where the diffusion profile was solved using a Crank-Nicholson algorithm with adaptive step

similarly approximated by a linear segment in modeling cal-S2€ and iteration over the nonlinear term containing the

. . The i iabl led b 12/D growth velocityV.
cite zoning. e time variable was scaled by I"/Da First, crystal growth was considered for constant bulk
~8.3x10° s=2.3 h and the effective crystal-solution inter-

f idthL di ‘i< of the ch . species concentration8y,=const. For a one-dimensional
ace widthlL. was expressed In units of the characteristic Zon'system, due to the finite spatial extent of the system, a steady

ing widthL=Vt~0.8 um. In addition, several other dimen- crystal growth regime is eventually achieved if the system is
sionless parameters were introduced=vca/vga, B et to evolve for a sufficiently long time, in accordance with
=BcalBoa, dg=Dg/Dp, and dc=Dc/D,. Equations  our analysis. The stability of these steady-state solutions can

(1)—(3), and(10) then transform into be investigated in analogy with the types of solutions found
) for the reduced version of the systd®i. In that paper, the
omi_ oM o (2g linear stability analysis indicated the presence of a stable
ot ToxZ TV Tax focus, an unstable focus, a stable node, and a séEdje2).
A bistable regime for which two different stable steady states
m;(1,t) = m;(t), (290  coexist was observed for small values of the paramaigrs
andp,.
am _ Here, the stability of the steady state was determined nu-
47 X:O+[m‘(0’t)7 ci(OIV=0, (30 merically by observing the dynamical solution behavior in

the vicinity of the steady state. Due to the difficulties in
X determining the correct type of linear stability for the nu-
Lo =[Vea~ X(VeatVeala)][X+(1=X)al?, merical solutions, only the stability properfgtable or un-
(31) stablg for the steady state was recorded. The regions of sta-
bility found in the present case are illustrated in Fig. 3 for a
where all the variables are in their dimensionless form andgimplified version of the system witdg=dc=1, p1=p,
d,=1. The ratio of the concentration scales in the agueousp, y=0, a=1, andB=1. The bulk concentrations in the
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FIG. 4. Numerical solutions of the full PDE system for the FIG. 5. Stability diagram for the full PDE model for a spherical

growth of a flat crystallite face. The parameters dgg=de=1 crystallite. The stability of the systefobtained numericallyis in-
p;=p,=p, L=0.01,y=0, a=1, andB=1. The dashed lines ére dicated as a function of the initial crystallite radius. The dimen-

¢ sionless interface roughnesslis-0.01 and other parameter values

the solutions in the region of bistability in Fig. 3 for two differen s
are the same as in Fig. 3.

initial conditions with p=0.13. The solid line is the oscillatory
solution forp=0.14. The bulk concentrations are considered con-
stantim; = 2. M, may change by as much as a factor of 10 during the
crystal growth time.

The spatial concentration profiles calculated according to

. : Egs.(16) were verified to fit the experimental concentration
etersL andp considered, two stable steady states COexiSt fofy .., “rpe fit is satisfactory when the diffusion coefficient is

small _values E‘F (F'%' 42 For Iarge Ivalules_ op. tr;lgb_steady_” chosen asDg=1.39x10 ° cn?/s and the concentrations
state is unstable and the numerical solution exhibits osci aMA'B’C are taken in the gel at a position immediately adja-

tory character(Fig. 4). The_gxact value op for which the cent 1o the reservoirs.
steady state loses its stability depends on the valleTie The calculated aqueous concentrations values at the crys-
line that separates the regions of stability in Fig. 3 correg|jization site at the time of nucleation are shown in Table |
sponds to the line that separates the regions of unstable focgsy the cases in which the location of the nucleated crystal-
and stable focus in Fig. 2. In the general case of arbitraryites is known from the BaSQgrowth experiments in the
values ofdg, dc, 7, @, andp, the region of bistability in  same setup. The initiglcore composition of the observed
Fig. 3 is separated from the region where the steady staterystallites[6] is also listed in Table I.
becomes unstable by a region where there exists only one Figure 6 shows the types of numerical solutions obtained
stable steady state. This is also consistent with the stabilitfor the case of the growth of a spherical crystallite when the
properties of the reduced system shown in Fig. 2. Increasinime dependence of the bulk concentrations in the solution is
the values of the bulk concentrations shifts the curve in Figtaken into account. The crystal compositiéris shown as a
3 down, thus enlarging the region where the steady state &inction of the distance —r,. For sufficiently large initial
unstable. In the general case of arbitrdgy, dc, 7, @, and  Crystallite sizery, a transition from a stable steady state
B, the curve, which separates the region where a single stabfgither Ba rich or Sr richto an oscillatory solution occurs as
steady state exists from the unstable region, is also shiftedne supersaturation in the solution increases due to the solute
downward. diffusion from the reservoir§Fig. 6(a)]. The same type of
Similar results are obtained for the case of a sphericaflynamical behavior is obtained when the growth of a flat
crystallite growth in the limit of large crystallite radius. For INfinitely large crystal face is considered. For smaller crys-

r—1 the concentration in the solution varies on a spatiata"ites’ however, this transition occurs for higher values of

— . ) he local solution concentratioligreater time counted from
scale of the ordet and the approximation of a flat crystal {he start of the experimentFig. 6(b)].

surface is sufficiently accurate. For smaller crystallites, how- pye to the difference in the diffusion coefficients, molar
ever, the concentration variations occur on a much smallejolumes, and kinetic coefficients of the two solid solution
scale and the system’s dynamics is differéRtg. 5. For  end members, one of the two stable steady states may lose its
small initial crystallite radius, the stable steady state loses itstability while another remains stable as the solution concen-
stability only for large values of the paramefer trations increase with time. In this case, the crystal compo-

To compare the simulated crystal composition profilessition may jump rapidly from one composition range to an-
with the ones observed in the experiment, changes in thether [Figs. 6c) and €d)]. Further increase in the local
bulk solution concentrations need to be taken into accounsupersaturation may cause a subsequent transition to an
Calculations based on Eqg4.6) indicate that concentrations oscillatory type of solutioriFig. 6(d)].

solution were taken a8y =2. For the range of the param-
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a b
1.0 1.0
ﬁ {\ [\ '\N
0.8 0.8
FIG. 6. Numerical solutions of the full PDE
x x . .
5 ool 5 0ol system _f_or a _spherlcal cry;talllte. The_ crygtal
g g compositionX is shown against the radial dis-
5 g tancer —rg, which characterizes the amount by
g o4 3 o4 which the crystal has grown beyond its initial size
& 5 ro. The time dependence of the bulk solution
0.24 0.2 concentrations is considered according to Eg.
U (16), the values of the reservoir concentrations
0.0 Y ' . 00 . ' . . M; are given below along with the tintecounted
0 20 40 60 0 20 40 60 g0 100 from the moment the solutions enter the gel col-
r-ry (um) r-r, (um) umn to the moment the crystal radiug js Other
c d parameter values ardg=1.127,d.=1.087, p;
1.0- 10- =0.08, p,=0.10, «=0.89, B=0.9, y=2.5
............................................. f X104, and L=0.01. The growing crystallite
08 0.5 was considered to be located yat15 cm from
,< = the reservoir containing Baglnd SrC) (a) ry
§ g =10, M;=0.5M, t=300 h; for larger,, the re-
g 081 g %% sult is about the same, which corresponds to the
8 § approximation of a flat crystallite surfacé) r
*‘50-4- “é‘“- =3.0, M;=0.5M, t=400h; (¢) r,=0.5, M,
=0.3M, t=360h; (d) ry=3.0, M;=0.5M, t
o.z-/J 0.2 =400 h.
0.0 . . . . ; 0.0 — . . . .
0 20 40 60 80 100 0 20 40 60 80 100
r-ry (pm) r-r, (um)
IV. REDUCED MODEL In the case of a spherical crystal, a similar reduction of

. Egs. (4)—(6) to a system of ODEs involves integration of
rlaquation(4) over volume and approximating the diffusion

e AL A2t i 0 4 o b a Inear seqment o lengThe reuling systn
y ' Pro- ¢ equations in a nondimensionalized form is

file can be approximated by a single straight line, in which
case the model can be reduced to a system of coupled ord(ij—m_ ( 13 2 rzl)

nary differential equations for the concentrations at the crys=_" 12+ 3 + 5

tal facem;(0,t) [9]. Such reduction allows one to perform a dt

linear stability analysis and thus analytically obtain the quali- (141)2

tative characteristics of the system’s dynamics. =d,[m(t)—m]———
Equations(28) are integrated ovek and the boundary |

conditions(29) and (30) are taken into account. Using di- 2

mensionless variables and omitting the argumerty) (Bom —r2V[c;—ym;(t)]— ymiv(—+rl )

m;, equationg28)—(30) then becomg9] 3
. 212 (1+r)3—r3
dm dm,(t —vm V| — Mt —-ml—
O 2(ma(1) - ma) 2V (0~ 4]~ o, Vm'V( 3 “')*7"[”"“) Ml
J dnct) dr‘ni(t)(l3+2rlz+rzl 33
m, ) - — -,
gt = 20al Mg(t) ~ Mg+ 2V[ yilig(t) ~ Cg]— ——, dt 14 3 2
(32 wherer is the radius of the crystal, which slowly increases as
dmc _ N ,\ dﬁ]C(t) t
0

where cy=cg+Cc and cg and cc are defined in Eq(8).

Equation (31) completes the reduced model. This set of The width of the diffusion boundary layér in general,
equations constitutes the version of the model investigated idaries withr. This dependence may be approximated, for
Ref.[9]. example, by choosing the value bfto correspond to the
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distance from the crystal surface where the solution concen- 10 T T
tration (23) for SO;?~ is equal to (+&)m,, wheree is a
small parameter. This gives

Vr
Izr(— 1). (35

UBAdA&‘mA SF
These reduced mod€(31) and(33) reproduce the general
features of the dynamics of the original PDE model. It is
therefore useful in investigating the system’s behavior for
small crystal radius where the PDE equations become stiff.
Also, it allows the investigation of the system’s dynamic
properties by means of a straightforward linear stability

analysis.

The linear stability analysis for the system of equations
(32) and(31) describing the growth of a flat crystallite sur- 00_0 02 04 06 08 10
face was performed in R€f9] and its main results are sum-
marized in the stability diagram of Fig. 2. Equatio(&3)
reduce to Eq(32) in the limit of larger (andl=1) and FIG. 7. Linear stability diagram for the reduced model of a
therefore their stability properties are the same in that limitspherical crystal. The stability properties are shown for either one of
However, as was shown earligg.g., Eq.(23)], the crystal  the two steady states, whexds close to 0 or 1. The dimensionless
growth mechanism depends on the crystallite size. Thereforgarameter values am, =3, dg=d.=1, p;=p,=0.20, L=0.01,
it is important to investigate how the stability of the systema=p=1, and y=0. The notation of the stability regions is the
changes with the crystallite radiusand the width of the same as in Fig. 2.
diffusion boundary layetr.

Assuming thatr and | change slowly, a pseudo-steady- steady state for which the crystal is Ba ribr Sr rich is
state for the autonomousn{=const) version of the equa- shown in Fig. 7. The stability diagram indicates that the
tions can be obtained by setting the left-hand side of Eqssteady state may become unstable via a Hopf bifurcation as
(33) to zero. If the terms proportional tp are neglected for the crystallite radius and the width of the diffusion boundary
simplicity, the steady state is easily shown to have the formayer[Egs.(34) and (35)] increase. This result suggests that

an autocatalytic oscillatory crystal growth may occur for

Vs€i st/ di (36) given bulk solution concentrations when the size of the crys-
l/r2+2/+ 1" tallite exceeds a certain critical value.

Increasing the bulk solution concentratioiis generally
whereVg is the steady state growth rate. In the limit of large shifts the curves in Fig. 7 towards smaller values of the crys-
r(r>1) it reduces to tallite radius, thus decreasing the critical value of the crys-

tallite radius for which the steady state loses its stability.

(9]
1

r (dimensionless units)

SN

I (dimensionless units)

m; o= M —

- Vet
m; s~ mi_Ci,stTL (37)
! V. NUMERICAL SOLUTION OF THE REDUCED MODEL
which is consistent with Eq22) evaluated ak=1. The numerical solutions of the reduced model for the

The solution of the system of nonlinear equations definedjrowth of a spherical crystallite are illustrated in Fig. 8.
by Egs.(36) and Eq.(31) (with the left-hand side equal to Equations(31) and (33) were solved using a fourth-order
zerg was found numerically to obtain the steady-state valueRunge-Kutta algorithm and the integr@4) was calculated
of m; ¢ and Xg. A linear stability analysis was then per- using the trapezoidal rule.
formed. The stability of the steady states was investigated by First, the dynamics of the system was studied for constant
finding the eigenvalues of the Jacobian matrix of the systembulk concentrations. For small crystallite radius, the system
(33) and (31) for each steady state. quickly settles into one of the stable steady stétdther Ba

For a wide range of parameters, there exist three steadych or Sr rich. Switching from one steady state to another is
states for which the crystal composition is close to the valuepossible as the crystal sizeand correspondingly the width
in the set(26). In the calculations, the terms proportional to of the diffusion boundary layer increase slowly in tifitég.

v were neglected, and the following simplifications were8(a)]. For large crystallite size, oscillatory solutions similar
made:p;=p,, B=1, anddy=dg=dc=1. With this choice, to the solutions generated by the full PDE model are found
the steady states for which the crystal is Ba rich and Sr rict{Figs. 8b) and §c)].

are symmetric in crystal composition and have exactly the When the time dependence of the bulk concentrations
same stability properties while the crystal composition in the(16) is considered, transitions between the steady states can
third steady state is exacty* =0.5. be obtained similarly to the ones observed for the PDE

The steady statX* =0.5 was unstable for all values of model as the concentrations in the solution around the grow-
the parameters considered. A typical stability diagram for théng crystallite evolve in time. The steady-state solution of the
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a b
1.0 1.0
%X 08l ’g 08 \ \ \
'g H 06 FIG. 8. Compositional profile generated by
g 081 § the reduced model for a spherical crystal. The
2 2 04 bulk solution concentrations were kept constant
041 and the parameter values wedg=1.127, d;
0.2 =1.087,L=0.01, «=1.0, $=0.9, andy=2.5
0'2'/’_J / / % X 1074, (a) A change in the crystal composition
001 occurs as the crystal grows larger as a result of
%3 1 20 30 40 50 0 10 20 30 the I(r) dependencem,=2.7, Mg=3.6, Mc
1, (um) 7, (um) =27, p,=0.15, p,=0.11, £=0.01, andr,
c =0.25. (b) Oscillatory solution corresponding to

the saddle regiofanalogous to that shown in Fig.
7) for very large crystal sizeh,=5.0, mg=3.1,

\ \ Me=2.9, p;=0.09, p,=0.13, I=1.0, andr,

% 03 =10. (c) Solution that roughly corresponds to the
% border region between the unstable focus and the
g 06 saddle regiortanalogous to the UF arfdiregions
% in Fig. 7). The parameter values are the same as
5 041 in (b), with the exception of,=0.15.

0.2

0.04 W /_’/\) /

0 10 20 30
rt, {um)

system, in many cases, sensitively depends on the bulk solparametersr; describe the noise amplitude. The fluctuations
tion concentrations and therefore on the location of the growin the solution concentrations around the crystallite may re-
ing crystallites in the gel column. Relatively small variations sult, for example, from disturbances caused by the growth of
in the concentration values lead to qualitative changes in thether crystallites. From physical considerations, the noise
type of solution, such as transition from a steady state chaprocesses;,(t) are expected to be approximately stationary.
acterized by a Sr-rich crystal composition to a steady statan Ornstein-Uhlenbeck noisgl4] with zero mean and unit
where the crystal is Ba rich. Typically, only one such transi-ariance is therefore used to simulate the aqueous concentra-
tion can be numerically observed in the course of the crystalion fiyctuations for all species. The correlation timefor
growth with the bulk concentrations time dependence degne noise processes is chosen significantly larger than the

scribed by Eqs(16). time step in the numerical calculations but much smaller than

The Va'”? of the_ _crystalllte radius for_wh|ch the Ste.adythe total crystal growth time. Since the electroneutrality of
state loses its stability for the bulk solution concentrations

and the parameter values used here is greater than the typithF sqluilrc]) N lc\:laén be dr‘rg:arlntalned by the cortre?p ondThg flugtua-
crystallite size observed in the experiments by about an ord jons in the an agueous concentrations, the noise
of magnitude. However, switching between the stable Stead;S‘)rocesses for all three species of interest can be considered
states, which results in an oscillatory zoning pattern, can b&latively independent from each other. _
observed in the framework of the current model when small When the stochastic bulk concentratio8) are consid-

random fluctuations of the bulk concentrations of species a¢'ed in the full PDE mode28)—(31) for the growth of a flat
the crystal nucleation site are considered. crystal face, an interesting noise-induced effect can be ob-

served when the parameters are chosen to correspond to the
bistable region in the stability diagram of Fig. 3 but close to
the instability line. Hence, deterministically, two stable
The effect of small fluctuations in the solution concentra-steady states coexist for the given choice of parameters. In
tions can be considered in the full PDE model by adding &he presence of noise, however, fluctuations in the bulk con-

stochastic term to the deterministic bulk concentratid€.  centrations may induce the system to make a temporary tran-
sition from the bistable region of its phase space to the un-

m;(t) =m; o(t) + aini(t), (39 stable region(Fig. 3 or 5. This results in stochastically
induced oscillatory compositional pattefisg. (a)] charac-
wherem; ¢(t) are the bulk concentrations of the salts in theterized by variations of the crystal composition over a wide
solution, #;(t) are the respective noise processes, and theange.

VI. THE EFFECTS OF NOISE
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FIG. 9. The effect of noise on the full PDE model. For the parameter values chosen, two stable deterministic steady statéa) coexist.
Oscillatory zoning compositional profile generated by the model for the case of a flat crystallite sorfad.dg=1.127,d-=1.087,
p;=p,=0.10,«=0.89,3=0.9, y=2.5x 10" % L=0.007, and = 2. Independent Ornstein-Uhlenbeck noise processes with amplitjdes
=0.3 and noise correlation timg,=0.1 are used to simulate fluctuations in the bulk concentratibh®a-Sr-Ba type of zoning generated
by the model for the case of a spherical crystallde=0.3M, dg=1.127,d-=1.087,p;=p,=0.17,2=0.89, 3=0.9, y=2.5x10"4, L
=0.01,t=360 h,y=15 cm, and,=0.5. Ornstein-Uhlenbeck noise parametersgre0.3 andr,=2.0. Relatively larger, may describe
fluctuations caused, for example, by the growth of other crystallites in the gel.

The same type of noise-induced oscillations is also ob- ACKNOWLEDGMENTS
served for the PDE model for the growth of a spherical crys-

tallite [Fig. 9b)]. The frequency of these noise-induced Engineering Research Council of Canada and the Ministry of

events depends on the noise amplltude and correlation t!mfaraining, Colleges and Universities of Ontario for financial
as well as on how far the system is from the unstable regioqypport.

in its parameter space. Thus, for small supersaturations, in

the presence of relatively small noise, only one or two rapid

crystal composition changes may occur during the crystal APPENDIX
growth time. This results in the Ba-Sr, Sr-Ba, Ba-Sr-Ba, or
Sr-Ba-Sr types of zoningsee Table)l For higher supersatu-
rations (higher reservoir solution concentrationsthese
noise-induced concentration changes are more freque
which results in noisy oscillatory zoning.

The authors would like to thank the Natural Science and

In this appendix we derive the differential equation for the
evolution of the kinetically defined composition at the sur-
nfface of a spherical cryst@Eq. (10)]. We proceed in the spirit

of Ref.[15], where a similar derivation was performed for
the case of a flat interface. We consider an atomically rough
surface of a spherical crystallite, which is a binary solid so-
lution with the end-member8 and C, in contact with a
ViIl. CONCLUSION supersaturated solution. If the number of the atomic units of
elementsB and C in the crystallite surface aneg andnc,

The present model of oscillatory zoning in (Ba,Sr)SO . D !
b y g in ( k l_ESpectlvely, then the surface molar compositiois defined

solid solution by an autocatalytic mechanism generates sol
tions that are qualitatively consistent with the observations o
the experimentally grown crystals. Consideration of the

physical parameters that determine the crystal growth Ng

mechanism as well as the linear stability analysis of the re- X= netne (A1)
duced model for the growth of a spherical crystallite indicate B¢

that oscillatory zoning arises due to the distortion of the dif-

fusion concentration profiles in the solution caused by thd.et us define the interface as a thin spherical shell, whose
increase in the crystallite size. The oscillatory zoning occursvidth is of the order of the length scale of the crystal surface
when the concentrations of the salts in the solution are larg8uctuations. The characteristic radius of this shietan be
and the crystal growth proceeds at a fast enough rate to inused as the average radius of the crystallite. If the accretion
pact the diffusion profiles in the solution around the crystal-ratesVg and V. are defined as the ratétength/time of

lite. Fluctuations in the crystallite growth environment may crystal surface growtkor dissolution due to the arrivalde-

be a significant factor contributing to the oscillatory zoning parture of the units ofB andC, respectively, then the incom-
formation as they facilitate transitions between the steadyng fluxes of the units oB andC to the interface are given
states of the dynamical reaction-diffusion system. by
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The number ofB units in the interface shell may be then
obtained as

Godmr?e 4arr?
C r VC v ’

c
(A2)

Godmr? 4arr?
ot Bwr_ BUB’

in

anil

ot

ng=4mr?pXL, (A7)

whereGg and G are the molecular fluxegwumber of mo-
lecular units per unit area per unit timewards the crystal- g of the rough crystallite-solution interface defined as
lite surface andvg and v are the atomic volumes of the
species. While the units are arriving from the solution to the
outer surface of the interface shell, they are leaving the shell f (" ;1)

at its inner surface due to the motion of the shell associated shel

with the crystallite growth. The corresponding outgoing mo-here the functiord is equal to 1 if the point’ is located in

lecular flux is proportional to the surface compositimnd  he solid and zero otherwise. The total change in the number
the surface area: of B units in the interface is then

where the parametdr (assumed constanis the effective

1

L=—
4r?

(A8)

out
ang

_ g d
Jt =t

ar
ot at at

at’
: - . . (A9)
where K is a coefficient of proportionality. In the steady

growth regime, when the number Bfunits in the interface By equating this expression to the difference between the
shell does not Change, the Change in the number of incomingcoming flux(A2) and the outgoing fluxA5) and using the

B units per unit time is balanced by the change in the numbegxpressior(A6) for p, one obtains

of outcomingB units. At the same time, the surface compo-

sition X corresponding to this steady growth regime may be

X4mr?K,

P
(A3) (417r2pXL)=LE(pX)+87TerX

La dx 2L X ar

defined kinetically{10] through the incoming fluxe&g and
Gc as
Gg

o= Get Go

(A4)

By comparing Eqs(A3) and (A4) it follows that K=Gg
+G¢ and

out

ot

Vg V
Ve, Ve
Up Uc

2

= X4ar . (A5)

Xt (1-X)aZ dt = 1 X+ (1-X)a ot

Ve
=Vg=X| Vet 7|, (A10)
wherea=vc/vg. Taking into account thdtl6]
or
—= Vet Ve (A11)

and thatL <r, the term containing 2/r may be neglected
with respect to the last term on the right-hand side of Eq.

Let us now define the molecular density in the solid at the A10) and we recover equatiofi0):

interface as

1

P™ Xog (1= Xuc -

daXx
La g =[Va—X(Va+Ve/a)l[X+(1-X)al®
(A12)
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