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Autocatalytic model of oscillatory zoning in experimentally grown „Ba,Sr…SO4 solid solution

Sergei Katsev and Ivan L’Heureux*
Ottawa-Carleton Institute for Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5

~Received 25 July 2002; published 12 December 2002!

Oscillatory zoning~OZ! is a phenomenon common to many natural minerals whereby the mineral compo-
sition varies more or less regularly from the core of the crystal to its rim. Oscillatory zoned barite-celestite
(Ba,Sr)SO4 crystals are one of the very few examples of the OZ phenomenon that were obtained under
controlled laboratory conditions. It is known that such crystals can be synthesized by precipitation from an
aqueous solution during counterdiffusion in a gel column connecting two reservoirs. We present here a model
of oscillatory zoning in such a binary solid solution grown from an aqueous solution. By expanding on a
previously suggested model, we obtain oscillatory dynamical solutions for two limit cases: the growth of a flat
crystal face and the growth of a spherical crystallite. We consider an autocatalytic dependence between the
crystal growth rate and the crystal surface composition. The oscillatory patterns then arise as a kinetic effect
due to the coupling between the diffusion field around the crystal and the fast crystal growth under far-from-
equilibrium conditions. The effects of fluctuations in the aqueous solution concentrations are also considered.
It is shown that they may lead to noisy oscillatory patterns.

DOI: 10.1103/PhysRevE.66.066206 PACS number~s!: 47.54.1r, 81.10.Aj, 05.65.1b, 91.60.Hg
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I. INTRODUCTION

Many minerals exhibit oscillatory zoning, whereby th
composition varies inside the crystals in a nonmonoto
fashion in the direction from the crystal core to its rim. Fo
long time, oscillatory zoning was believed to be a rare p
nomenon, an anomalous case of mineral zoning. Howe
with the development of more sophisticated observat
techniques, it was shown that such zoning, in one form
another, is found in many mineral classes and in a w
range of geological environments@1#. Understanding the ori-
gin of the zoning is important, as it may provide informatio
on the genesis of the mineral and the geological history o
host rock. For instance, in hydrothermal environments
may yield insights into the details of fluid-rock interaction

In many minerals, oscillatory patterns reflect variations
the geological environment at the time of mineral formati
~so-called extrinsic mechanism!. However, other mecha
nisms are possible. It is known that spatiotemporal patte
can arise spontaneously without external templates in non
ear systems subjected to far-from-equilibrium conditions~in-
trinsic mechanism!. In particular, reaction-diffusion system
have long since been known to hold potential for se
organization@2#. In the case of crystal growth under cond
tions far-from-thermodynamic equilibrium, a fast cryst
growth rate may provide nonlinear couplings between diff
ent dynamical variables, which is a necessary condition
self-organization.

In spite of widespread observations of oscillatory zon
and a relative abundance of theoretical models used to
plain the pattern formation in various environments, the z
ing patterns have almost never been obtained under
trolled laboratory conditions in crystal nucleation and grow
experiments. One of the very few examples of mineral os
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latory zoning that have been reproduced in a laboratory
the oscillatory patterns in the solid solution of bari
(BaSO4) and celestite (SrSO4) synthesized by Putnis’s
group@3#. Oscillatory zoned single crystals of barite celest
contained up to ten zones, whereby Ba crystal composi
switched abruptly between roughly 25% and 90%. The ty
cal zone width was about 7–10mm and the typical zoned
crystallites were about 150mm in size.

In a series of experiments by Putnis’s group@3–6#, barite
and barite-celestite solid solution crystals were grown fr
an aqueous solution during counterdiffusion in a gel colu
connecting two reservoirs containing the initial reacta
~Fig. 1!. One month after the start of the experiment, t
crystals were extracted from the gel and their morpholo
was studied by scanning electron microscopy. Various zon
textures@4# corresponding to different initial reservoir con
centrations are listed here in Table I.

The experiment was conducted in a controlled enviro
ment and therefore many of the microscopic crystal grow
parameters are known or can be estimated with suffic
precision. Nucleation and growth of the (Ba,Sr)SO4 crystals
from an aqueous solution have been extensively stud

FIG. 1. Experimental setup, in which oscillatory zoned cryst
of (Ba,Sr)SO4 were synthesized in Ref.@3#. The reservoirs contain-
ing the mother solutions are connected by a gel column 28 cm
length. The reactants counterdiffuse in the column and (Ba,Sr)4

crystals nucleate and grow in some region~shown as gray! inside
the column. After a month of growth, the crystals were extrac
and their morphology was studied by scanning electron microsc
©2002 The American Physical Society06-1
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TABLE I. Experimentally obtained textures in (Ba,Sr)SO4 . The crystal zoning experimental data a
taken from Ref.@4#. The nucleation time is counted from the moment the solutions enter the gel col
Zoning type notation: OZ5oscillatory zoning,Z15Ba-Sr-Ba, BA5barite, Z25Sr-Ba-Sr.

Concentrations at
the reservoirsMi , M

Ba/Sr/SO4

Type
of

zoning

Nucleation
locationa y,

cm

Coreb

composition
X

Nucl.
time
t, h

Concentration at
nucleation,c m& , mM

Ba/Sr/SO4

0.5/0.5/0.5 OZ 13–16 0.90 288 7.7-1.4/6.8-1.2/1.4-8.7
0.5/0.5/0.3 OZ 15–18 0.90 312 3.6-0.6/3.1-0.5/4.0-17.
0.3/0.3/0.5 OZ 16d 0.91 336 1.7/1.6/13d

0.3/0.3/0.3 Z1 13–15 360 9.0-3.7/8.2-3.2/2.4-6.4
0.5/0.5/0.1 Z1 17–20 0.88 384 3.0-0.6/2.6-0.5/5.9-17.0
0.3/0.3/0.1 Z1 18d 0.89 408 1.6/1.4/24d

0.3/0.1/0.1 BA 21d 0.94 576 1.7/0.8/30d

0.1/0.3/0.1 Z1 and
Z2

21d 0.79 624 0.9/1.6/31d

aLocation of the nuclei in the gel column is taken from Ref.@5#, where it was reported for the pure bari
case.
bThe composition of the crystal core is assumed equivalent to the composition of the newly nuc
crystallites. The corresponding data are taken from Ref.@6#.
cThe concentrations at the nucleation site were calculated from Eq.~16!. The range of the values give
corresponds to the range in the nucleation locationy.
dThe concentrations of Ba21 and Sr21 at the nucleation site at the nucleation time were taken from Ref.@4#.
The corresponding nucleation location and the concentration of SO4

22 were calculated using Eq.~16!.
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@5–8# and data are available for many of the important p
rameters. Since the detailed information about the cry
growth environment is almost never available for natu
minerals, constructing a model that would simulate the
perimentally observed oscillatory zoning is an important s
towards understanding natural oscillatory zoning.

In this paper, we suggest an autocatalytic model of os
latory banding in (Ba,Sr)SO4 crystals, which extends th
previously suggested model of L’Heureux and Jamtveit@9#.
In that work, the autocatalytic crystal growth of a flat cry
tallite surface and the diffusion of the components in
solution around the crystal were described in terms of pa
differential equations~PDEs!. The model was then reduce
to a set of ordinary differential equations~ODEs! by intro-
ducing a boundary layer approximation. Linear stabil
analysis of those equations and their direct numerical s
tion demonstrated the existence of oscillatory solutio
Here, the numerical solutions to the original set of PDEs
obtained for two limit cases: the one-dimensional growth
a flat crystal face and the growth of a small spherical cr
tallite. Also, a reduced model for the growth of a spheri
crystallite is considered, which allows us to perform a mo
complete linear stability analysis. The effects of fluctuatio
in the crystal growth environment on the oscillatory patte
formation are also considered in this paper. Although
specific case of (Ba,Sr)SO4 is illustrated here, the mecha
nisms described in this paper are general and could be
plied to other solid solutions grown from an aqueous so
tion.

In our model, the oscillatory solutions are obtained a
result of nonlinear coupling between the kinetics of the m
lecular attachment processes at the crystal-solution inter
and the diffusion field around the crystal. In the approxim
06620
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tion of a spherical crystallite, the onset of oscillations is
lated to the transition from an interface-controlled crys
growth regime to a diffusion-controlled growth, which o
curs as the crystallite size increases. In addition, reason
small fluctuations in the bulk concentrations of the comp
nents are shown to facilitate large-magnitude dynamic tr
sitions between the compositional ranges and thus enl
the parameter range in which oscillatory zoning can
achieved.

The paper is organized as follows. First, the model
presented and its steady-state solutions are discussed.
the numerical results are presented. After that, the mode
reduced to a set of ODEs in the approximation of a spher
crystallite and a linear stability analysis of the resulting s
tem of equations is performed. The reduced system is t
solved numerically. Finally, the effect of noise on the fu
PDE model is considered and the results are summarized
appendix completes the paper.

II. MODEL

We consider the growth of (Ba,Sr)SO4 crystals from a
solution in the setup shown in Fig. 1. We are not interested
the nucleation phase@8# and therefore consider only th
growth process for a previously nucleated crystallite. T
growth proceeds according to the precipitation reactions

SO4
221Ba21→BaSO4, SO4

221Sr21→SrSO4,

where both BaSO4 and SrSO4 are incorporated in the sam
crystal to form a solid solution. The following symbolic no
tation is used in the description of the model belo
6-2
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AUTOCATALYTIC MODEL OF OSCILLATORY ZONING . . . PHYSICAL REVIEW E66, 066206 ~2002!
A5SO4
22, B5Ba21, C5Sr21, BA5BaSO4, and CA

5SrSO4. Since the growth layers of similar chemical com
position in the observed zoned crystals are parallel to
crystal faces, we first consider growth only in one dimensi
in the direction perpendicular to the crystal face. We cho
a frame of reference moving with the growing crystal in su
a way thatx50 always corresponds to the crystal-soluti
interface. Thus,x.0 corresponds to the space occupied
the aqueous solutions, whereasx,0 is associated with the
space occupied by the crystal.

If mi(x,t) are the concentrations~moles per volume! of
the ions of speciesi ( i 5A, B, or C! andV is the rate of the
crystal surface advance~length/time! then the evolution of
the species concentration fields in the diffusion bound
layer surrounding the crystal is given by the diffusion equ
tions

]mi

]t
5Di

]2mi

]x2 1V
]mi

]x
, ~1!

whereDi are the diffusion coefficients in the solution~as-
sumed independent of the concentration! and the second
term is due to the choice of the coordinate system. T
boundary condition far from the growing crystal is natura
given by

mi~`,t !5m& i~ t ! ~2!

wherem& i(t) are the bulk values of the concentrations at
crystallization site that may depend on time due to the infl
of species from the reservoirs. In the experiments of R
@3–6#, the size of the grown barite-celestite crystallites w
always much smaller than the dimensions of the gel colu
~1.2 cm in diameter, 28 cm in length!. Therefore, the solution
in the gel at the nucleation site can be considered to h
locally, the same bulk species concentrations in all directi
around the crystallite. The continuity of the mass curren
the crystal-solution interface (x50) gives the second bound
ary condition:

Di

]mi

]x U
x50

1@mi~0,t !2ci~ t !#V50, ~3!

whereci(t) denotes the molar concentration in the solid
the growing front. It is clear from the stoichiometry thatcA
5cB1cC . Also, for the case of crystal growth from a sol
tion, ci@mi .

Since the above estimates suggest that a change in
growth mechanism may occur as the crystal becomes la
an extension of the model to the case of a spherical cryst
useful. By writing the diffusion equations for the species
the solution in spherical coordinates and assuming growt
the radial direction only, equations~1!, ~2!, and ~3! can be
transformed into

]mi

]t
5D

]2mi

]r2 1
2D

r8

]mi

]r
1V

]mi

]r
, ~4!

mi~r→`,t !5m& i~ t !, ~5!
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]mi

]r U
r50

1@mi~0,t !2ci~ t !#V50, ~6!

wherer is the distance from the interface measured in
radial direction andr8 is the distance from the center of th
crystal. If the initial nucleus has the sizer 0 , then

r8~ t !5r~ t !1r 01E
0

t

V~ t8!dt8. ~7!

It is convenient to describe the composition of the so
phase by the mole fraction of BaSO4 in the crystalX(0<X
<1). The relationship betweenX andci is then given by

cB5
X

vBAX1vCA~12X!
, cC5

12X

vBAX1vCA~12X!
,

~8!

where vBA and vCA are the molar volumes of the soli
BaSO4 and SrSO4, respectively.

The evolution of the crystal compositionX at the interface
is determined kinetically by the ratesVBA andVCA at which
the units ofBA and CA are attached~or detached! to the
crystal surface. They can be defined as the rate of growt
a flat crystal face consisting of pure BaSO4 and SrSO4, re-
spectively, in meter per second. The total growth velocity
then @9#

V5VBA1VCA . ~9!

As argued in Ref.@9#, it is useful to introduce another equa
tion that describes the dynamics of the compositionX across
the crystal-solution interface. Using mass balance across
interface and assuming normal crystal growth mechani
we obtain~see the Appendix!

La
dX

dt
5@VBA2X~VBA1VCA /a!#@X1~12X!a#2,

~10!

where a5vCA /vBA50.89 andL is the effective crystal-
solution interface width which characterizes the roughnes
the interface. If the difference in molar volume is neglecte
this equation reduces to

L
dX

dt
5VBA2XV. ~11!

In the steady state, the crystal composition is thus kinetic
defined@10# asX5VBA /V.

The three equations~1! or ~4! are coupled among them
selves as well as with Eq.~10! through the term containing
the growth velocityV.

In general, the crystal growth rateV depends nonlinearly
on the concentrations in the solutionmA , mB , andmC near
the interface. In the case of a continuous two-compon
growth of the crystal surface in contact with a dilute solutio
the growth rate can be approximated by

VBA5bBA8 ~mBmA2mB
0mA

0 !, ~12!
6-3
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wheremi
0 are the equilibrium concentrations in the soluti

andbBA8 is the kinetic coefficient@11#

bBA8 5aBAf vBA
2 ~aBA /dBA!2 exp@2DUBA /kT#. ~13!

Here, aBA is the size of a molecular building unit,f is a
frequency factor,vBA is the molar volume in the solid,dBA is
the average distance between kink sites on the growing
face, andDUBA is the energy barrier for the incorporation
the building unit into the crystal. The factor (aBA /dBA)2

characterizes the probability of finding a suitable kink site
the two-dimensional surface of the crystal. The growth r
VCA can be defined in a similar way.

Attachment of the BaSO4 units to the BaSO4 kink sites is
energetically favored over their attachment to the SrSO4 kink
sites because of the lattice misfit and because chemical b
ing is generally stronger between units of the same spec
Thus the average distance between the favorable kink
for the attachment of BaSO4 is expected to decrease wit
increasing BaSO4 molar fraction in the crystal surface. Th
simplest relation that mimics this dependence on the cry
composition is@9#

~aBA /dBA!}X1p1 , ~aCA /dCA!}12X1p2 , ~14!

where the constantsp1,2 characterize the residual probabi
ties of finding a favorable kink site for the growth of BaSO4
on a pure SrSO4 surface, and vice versa. The growth rat
then take the form

VBA5bBA~mBmA2mB
0mA

0 !~X1pi !
2,

VCA5bCA~mCmA2mC
0 mA

0 !~12X1p2!2, ~15!

wherebBA,CA are new kinetic coefficients. For highly supe
saturated solutions, the product of the equilibrium concen
tions in Eqs.~15! can be neglected@9#. This expression for
the growth rates thus describes the autocatalytic growth
two-component crystal.

The autocatalytic dependence of the growth rates on
crystal composition provides the possibility of generating
cillatory patterns in the crystal composition by the followin
qualitative mechanism. When the surface of a growing cr
tallite is rich in, say,B, the attachment ofB units to the
crystal surface from the solution is energetically favored o
the attachment ofC. Thus, aB-rich crystal zone is formed
while the solution in the vicinity of the crystal is being d
pleted ofB and becomes enriched inC. Eventually, aC-rich
layer will nucleate on the surface of theB-rich crystal, which
causes further autocatalytic attachment of theC units from
the solution and therefore a growth of aC-rich crystal zone.
This, in turn, depletes the solution ofC while diffusion
gradually increases the concentration ofB until nucleation of
B occurs and the cycle is thus repeated.

To correctly simulate the crystal growth experiment in t
setup shown in Fig. 1, it is necessary to know the time
pendence of the bulk concentrationsm& i in the solution at the
crystallization site. The evolution of the concentration p
files in the gel can be found analytically@9# by solving the
corresponding diffusion equations. Considering the re
06620
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voirs to be inexhaustible~which is a good approximation fo
the experiment duration times smaller than one month
for large reservoir concentrations@5#! and neglecting the
depletion of the solution due to crystallization, the time ev
lution of the aqueous concentrations at the crystallization
is given by

m& B,C~ t !5MB,C erfcS y

2ADB,C~ t1t!
D ,

m& A~ t !5MA erfcS H2y

2ADA~ t1t!
D , ~16!

whereMi are the known concentrations of the componeni
in the reservoir;y is the distance from the BaCl2-SrCl2 res-
ervoir to the nucleation site;H528 cm is the total column
length; andt is the nucleation time measured from the m
ment the solutions enter the gel column. The location of
crystallization site y can be determined from th
BaSO4-SrSO4 nucleation experiments in the same expe
mental setup@5,6#.

Equations~1! with the boundary conditions~2! and~3! do
not have a steady-state solution. This is easily shown
tentatively setting the left-hand side of the equation to z
and integrating twice over the space coordinatex to obtain
what would be the steady-state concentration distribution
the solution,

msti
~x!5C1i1

Di

V
expS 2

x

Di /VDC2i . ~17!

The integration constantC1i can be obtained from the
boundary condition~2!:

C1i5m& i . ~18!

The boundary condition~3! does not allow the determinatio
of the second integration constantC2i but leads tom& i5csti

,

where csti
are the steady-state molar concentrations in

crystal. The latter relation is impossible to satisfy for both
and Sr at the same time because the concentration in
solid phasecst is always greater than the corresponding co
centration in the aqueous solutionm& for at least one of these
species.

A steady state may be achieved, however, if a diffus
boundary layer of finite width is considered. If the bounda
condition ~2! is taken not at infinity but at some finite dis
tance from the interfacel, then the integration constantC2i
can be obtained as

C2i5
V

Di
~m& i2csti

!e~V/Di !l ~19!

and equation~17! becomes

msti
~x!5csti

2~csti
2m& i !e

~V/Di !l . ~20!

By taking this relation atx50 and expanding the exponen
the boundary layer width can be obtained as
6-4
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l 5
Di

V

m& i2mi~0!

csti
2m& '

Di

V

m& i2mi~0!

csti

. ~21!

In this case, the concentration profiles in the solution n
the crystal interface have an approximately linear form,

mi~x!'mi~0!1csti

V

Di
x. ~22!

While the current work does not rely on the above si
plifications, the approximations~21! and ~22! were taken in
Ref. @9#.

If, instead of linear growth in one dimension, the rad
growth of a spherical crystallite is considered, then a pseu
steady-state solution can be obtained. If the diffusion field
the solution adjusts itself adiabatically quickly to the chang
caused by the increase in the crystal size and the differe
in solid molar volume is neglected so thatXst5VBA /V in eq.
~11!, a pseudo-steady-state concentration profile in the s
tion can be obtained in the form

mi~r8!'m& i2
Vi

vDi

r 2

r8
, ~23!

where the steady-state growth rateVi is eitherVB5VBA or
VC5VCA or VA5VBA1VCA , r is the slowly increasing crys
tal radius,r8>r is the distance from the center of the cryst
andv is the molar volume. When the second term is sm
the concentration near the crystal-solution interface is cl
to the bulk concentration value and the crystal growth occ
in the kinetic regime. However, as the crystal becom
larger, diffusion starts to play a role.

The pseudo-steady-state concentrations at the inter
mi(r ) are obtained as the solution of the system of equati
~23! taken atr85r where the growth ratesVi depend on
mi(r ) through~15!. If the solution concentration at the inte
face is not very different from its bulk value and the equili
rium concentrations in Eqs.~15! are neglected then th
steady-state concentrations at the interface are

mA'm& A@12m& BaB82m& CaC8 #

mB'm& B@12m& AaB#, ~24!

mC'm& C@12m& AaC#,

where

aB5r
1

v
bBA~X1p1!2/DB ,

aC5r
1

v
bCA~12X1p2!2/DC ,

aB85r
1

v
bBA~X1p1!2/DA , aC8 5r

1

v
~12X1p2!2/DA .

In the general case of arbitrary interface concentratio
the pseudo-steady-state solution also exists and is contin
06620
r

-

l
o-
n
s
ce

u-

,
l,
e

rs
s

ce
s

s,
us

both in r andX, as verified numerically for a wide range o
parameter values. This indicates that, under the current
proximations, the steady-state solution is always sta
Therefore, oscillatory solutions or switching between stea
states are only possible when those approximations cea
be valid, i.e., when the distortion of the diffusion field in th
solution due to the changes in the crystal sizer is considered.

The pseudo-steady-state value of the compositionX is ob-
tained by setting the left-hand side of the Eq.~11! equal to
zero. Using the approximation~15! one obtains

Xst5
VBA

V
5

bBAmB~Xst1p1!2

bBAmB~Xst1p1!21bCAmC~12Xst1p2!2 .

~25!

If the concentrationsmB andmC are similar,bBA'bCA ,
and the small parametersp1 andp2 are approximately equal
then the pseudo-steady-state composition is close to on
the values in the set

X* 5$0, 0.5, or 1%. ~26!

These values correspond to pure SrSO4, a crystal compo-
sition with equal proportions of Ba and Sr sulphate, or pu
BaSO4, respectively.

The diffusion of the Ba21, Sr21, and SO4
22 ionic species

in the gel is complicated by the electric interactions betwe
the ions in the solution. Far from the nucleation zone,
binary salt diffusion from the reservoirs~Fig. 1! may be char-
acterized by the diffusion coefficients computed from t
Nernst-Hartley relation

Dsalt5
~z11uz2u!D1D2

z1D11uz2uD2
, ~27!

whereD1 andD2 are the tracer diffusion coefficients for th
cations and anions andz1 andz2 are the respective charge
The overall electroneutrality of the solution is maintained
the coupling between the cation and anion diffusions. Us
ionic diffusion data for individual elements@12#, the binary
diffusion coefficients can be obtained asD(BaCl2)51.39
31025 cm2/s, D(SrCl2)51.3431025 cm2/s, and
D(Na2SO4)51.2331025 cm2/s. In the nucleation zone, th
diffusion phenomenon, in principle, is more complex as
diffusion coefficients in a system containing more than t
ionic species become concentration dependent@12# and thus
their values change as the species concentrations evolv
time. However, the Na1 and Cl2 ions that remain in solution
after the barite-celestite crystals precipitate should eff
tively maintain the electroneutrality of the solution, so th
the diffusion coefficients in the nucleation zone should n
be very different from the binary coefficients calculat
above.

III. NUMERICAL SOLUTIONS OF PDEs

The equations were nondimensionalized in the followi
way. The concentrationsmi were scaled by a typical valu
m̄;5 mM5531026 mole/cm3. The solid phase concentra
tions were scaled by the inverse molar volume of BaSO4 c̄
6-5
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51/vBA50.019 mole/cm3. The growth velocity was scale
by a typical valueV̄;1028 cm/s, which was estimated b
dividing the typical crystallite size by the duration of th
experiment. The space coordinatex was scaled by the width
of the diffusion boundary layer defined in Eq.~21!: l̄

5m̄DA /V̄c̄'3 mm whereDA is the effective diffusion co-
efficient for SO4

22, DA51.2331025 cm2/s. This value of
the diffusion boundary layer width is consistent with t
value obtained in Ref.@13# where the diffusion profile was
similarly approximated by a linear segment in modeling c
cite zoning. The time variable was scaled byt̄ 5 l̄ 2/DA
'8.33103 s52.3 h and the effective crystal-solution inte
face widthL was expressed in units of the characteristic z
ing width L̄5V̄ t̄'0.8mm. In addition, several other dimen
sionless parameters were introduced:a5vCA /vBA , b
5bCA8 /bBA8 , dB5DB /DA , and dC5DC /DA . Equations
~1!–~3!, and~10! then transform into

]mi

]t
5di

]2mi

]x2 1gV
]mi

]x
, ~28!

mi~ l ,t !5m& i~ t !, ~29!

di

]mi

]x U
x50

1@mi~0,t !g2ci~ t !#V50, ~30!

La
dX

dt
5@VBA2X~VBA1VCA /a!#@X1~12X!a#2,

~31!

where all the variables are in their dimensionless form a
dA51. The ratio of the concentration scales in the aque

FIG. 2. Linear stability diagram for the reduced model of R
@9#. The corresponding parameter values arem& i52, a50.89, b
51, dB50.79, dC50.74, andp15p2 . The stability regions are
denoted as follows: SF, stable focus; UF, unstable focus;S, saddle;
and SN, stable node. The bistability region extends below
dashed line in the diagram. Reprinted from Ref.@9#, with permis-
sion from Elsevier Science.
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and solid phases isg5m̄/ c̄52.531024. Due to the finite
grid size, the boundary condition~29! is taken at the distance
l from the interface, which is of the order ofl̄ .

The nondimensionalized system of three partial differe
tial equations~28! alone with the boundary conditions~29!
and ~30! and the ordinary differential equation~31! were
solved using a Crank-Nicholson algorithm with adaptive s
size and iteration over the nonlinear term containing
growth velocityV.

First, crystal growth was considered for constant bu
species concentrationsm& i5const. For a one-dimensiona
system, due to the finite spatial extent of the system, a ste
crystal growth regime is eventually achieved if the system
let to evolve for a sufficiently long time, in accordance wi
our analysis. The stability of these steady-state solutions
be investigated in analogy with the types of solutions fou
for the reduced version of the system@9#. In that paper, the
linear stability analysis indicated the presence of a sta
focus, an unstable focus, a stable node, and a saddle~Fig. 2!.
A bistable regime for which two different stable steady sta
coexist was observed for small values of the parametersp1
andp2 .

Here, the stability of the steady state was determined
merically by observing the dynamical solution behavior
the vicinity of the steady state. Due to the difficulties
determining the correct type of linear stability for the n
merical solutions, only the stability property~stable or un-
stable! for the steady state was recorded. The regions of
bility found in the present case are illustrated in Fig. 3 fo
simplified version of the system withdB5dC51, p15p2
5p, g50, a51, andb51. The bulk concentrations in th

.

e

FIG. 3. Stability diagram for the full PDE model in one dime
sion. The stability of the steady state was determined numeric
For simplicity, heredB5dC51, p15p25p, g50, a51, and b
51. The horizontal boundary between the stable and unstable
gions corresponds to the line between the SF and UF regions in
2. The stability of the system for small values ofL could not be
determined because of the strong dependence on the width o
boundary layerl, which appears in numerical simulations when t
concentration profile in the solution evolves on a spatial scale c
parable with the size of the simulation grid.
6-6
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solution were taken asm& i52. For the range of the param
etersL andp considered, two stable steady states coexist
small values ofp ~Fig. 4!. For large values ofp, the steady
state is unstable and the numerical solution exhibits osc
tory character~Fig. 4!. The exact value ofp for which the
steady state loses its stability depends on the value ofl. The
line that separates the regions of stability in Fig. 3 cor
sponds to the line that separates the regions of unstable f
and stable focus in Fig. 2. In the general case of arbitr
values ofdB , dC , g, a, and b, the region of bistability in
Fig. 3 is separated from the region where the steady s
becomes unstable by a region where there exists only
stable steady state. This is also consistent with the stab
properties of the reduced system shown in Fig. 2. Increa
the values of the bulk concentrations shifts the curve in F
3 down, thus enlarging the region where the steady sta
unstable. In the general case of arbitrarydB , dC , g, a, and
b, the curve, which separates the region where a single st
steady state exists from the unstable region, is also sh
downward.

Similar results are obtained for the case of a spher
crystallite growth in the limit of large crystallite radius. Fo
r;1, the concentration in the solution varies on a spa

scale of the orderl̄ and the approximation of a flat crysta
surface is sufficiently accurate. For smaller crystallites, ho
ever, the concentration variations occur on a much sma
scale and the system’s dynamics is different~Fig. 5!. For
small initial crystallite radius, the stable steady state loses
stability only for large values of the parameterp.

To compare the simulated crystal composition profi
with the ones observed in the experiment, changes in
bulk solution concentrations need to be taken into acco
Calculations based on Eqs.~16! indicate that concentration

FIG. 4. Numerical solutions of the full PDE system for th
growth of a flat crystallite face. The parameters aredB5dC51,
p15p25p, L50.01,g50, a51, andb51. The dashed lines ar
the solutions in the region of bistability in Fig. 3 for two differen
initial conditions with p50.13. The solid line is the oscillatory
solution for p50.14. The bulk concentrations are considered c
stantm& i52.
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m& i may change by as much as a factor of 10 during
crystal growth time.

The spatial concentration profiles calculated according
Eqs.~16! were verified to fit the experimental concentratio
data. The fit is satisfactory when the diffusion coefficient
chosen asDB51.3931025 cm2/s and the concentration
MA,B,C are taken in the gel at a position immediately ad
cent to the reservoirs.

The calculated aqueous concentrations values at the c
tallization site at the time of nucleation are shown in Tabl
for the cases in which the location of the nucleated crys
lites is known from the BaSO4 growth experiments in the
same setup. The initial~core! composition of the observed
crystallites@6# is also listed in Table I.

Figure 6 shows the types of numerical solutions obtain
for the case of the growth of a spherical crystallite when
time dependence of the bulk concentrations in the solutio
taken into account. The crystal compositionX is shown as a
function of the distancer 2r 0 . For sufficiently large initial
crystallite sizer 0 , a transition from a stable steady sta
~either Ba rich or Sr rich! to an oscillatory solution occurs a
the supersaturation in the solution increases due to the so
diffusion from the reservoirs@Fig. 6~a!#. The same type of
dynamical behavior is obtained when the growth of a fl
infinitely large crystal face is considered. For smaller cry
tallites, however, this transition occurs for higher values
the local solution concentrations~greater timet counted from
the start of the experiment! @Fig. 6~b!#.

Due to the difference in the diffusion coefficients, mol
volumes, and kinetic coefficients of the two solid solutio
end members, one of the two stable steady states may los
stability while another remains stable as the solution conc
trations increase with time. In this case, the crystal com
sition may jump rapidly from one composition range to a
other @Figs. 6~c! and 6~d!#. Further increase in the loca
supersaturation may cause a subsequent transition to
oscillatory type of solution@Fig. 6~d!#.

-

FIG. 5. Stability diagram for the full PDE model for a spheric
crystallite. The stability of the system~obtained numerically! is in-
dicated as a function of the initial crystallite radiusr 0 . The dimen-
sionless interface roughness isL50.01 and other parameter value
are the same as in Fig. 3.
6-7
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FIG. 6. Numerical solutions of the full PDE
system for a spherical crystallite. The cryst
compositionX is shown against the radial dis
tancer 2r 0 , which characterizes the amount b
which the crystal has grown beyond its initial siz
r 0 . The time dependence of the bulk solutio
concentrations is considered according to E
~16!, the values of the reservoir concentratio
Mi are given below along with the timet counted
from the moment the solutions enter the gel co
umn to the moment the crystal radius isr 0 . Other
parameter values aredB51.127, dc51.087, p1

50.08, p250.10, a50.89, b50.9, g52.5
31024, and L50.01. The growing crystallite
was considered to be located aty515 cm from
the reservoir containing BaCl2 and SrCl2 ~a! r 0

510, Mi50.5M , t5300 h; for largerr 0 , the re-
sult is about the same, which corresponds to
approximation of a flat crystallite surface.~b! r 0

53.0, Mi50.5M , t5400 h; ~c! r 050.5, Mi

50.3M , t5360 h; ~d! r 053.0, Mi50.5M , t
5400 h.
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IV. REDUCED MODEL

As was shown in the preceding section, the species c
centrations in the solution vary almost linearly with the d
tance from the crystal-solution interface. This diffusion pr
file can be approximated by a single straight line, in wh
case the model can be reduced to a system of coupled
nary differential equations for the concentrations at the cr
tal facemi(0,t) @9#. Such reduction allows one to perform
linear stability analysis and thus analytically obtain the qu
tative characteristics of the system’s dynamics.

Equations~28! are integrated overx and the boundary
conditions~29! and ~30! are taken into account. Using d
mensionless variables and omitting the argument (0,t) from
mi , equations~28!–~30! then become@9#

dmA

dt
52~m& A~ t !2mA!12V@gm& A~ t !2cA#2

dm& A~ t !

dt
,

dmB

dt
52dB@m& B~ t !2mB#12V@gm& B~ t !2cB#2

dm& B~ t !

dt
,

~32!

dmC

dt
52dC@m& C~ t !2mC#12V@gm& C~ t !2cC#2

dm& C~ t !

dt
,

where cA5cB1cC and cB and cC are defined in Eq.~8!.
Equation ~31! completes the reduced model. This set
equations constitutes the version of the model investigate
Ref. @9#.
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In the case of a spherical crystal, a similar reduction
Eqs. ~4!–~6! to a system of ODEs involves integration o
equation~4! over volume and approximating the diffusio
profile by a linear segment of lengthl. The resulting system
of equations in a nondimensionalized form is

dmi

dt S l 3

12
1

rl 2

3
1

r 2l

2 D
5di@m& i~ t !2mi #

~ l 1r !2

l

2r 2V@ci2gmi~ t !#2gmiVS l 2

3
1rl D ,

2gm& iVS 2l 2

3
1rl D1gV@m& i~ t !2mi #

~ l 1r !32r 3

3l

2
dm& i~ t !

dt S l 3

4
1

2rl 2

3
1

r 2l

2 D , ~33!

wherer is the radius of the crystal, which slowly increases

r ~ t !5r ~0!1gE
0

t

V~ t8!dt8. ~34!

The width of the diffusion boundary layerl, in general,
varies with r. This dependence may be approximated,
example, by choosing the value ofl to correspond to the
6-8
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distance from the crystal surface where the solution conc
tration ~23! for SO4

22 is equal to (12«)m& A , where« is a
small parameter. This gives

l 5r S Vr

vBAdA«m& A
21D . ~35!

These reduced models~31! and~33! reproduce the genera
features of the dynamics of the original PDE model. It
therefore useful in investigating the system’s behavior
small crystal radiusr where the PDE equations become st
Also, it allows the investigation of the system’s dynam
properties by means of a straightforward linear stabi
analysis.

The linear stability analysis for the system of equatio
~32! and ~31! describing the growth of a flat crystallite su
face was performed in Ref.@9# and its main results are sum
marized in the stability diagram of Fig. 2. Equations~33!
reduce to Eq.~32! in the limit of large r ~and l 51) and
therefore their stability properties are the same in that lim
However, as was shown earlier@e.g., Eq.~23!#, the crystal
growth mechanism depends on the crystallite size. Theref
it is important to investigate how the stability of the syste
changes with the crystallite radiusr and the width of the
diffusion boundary layerl.

Assuming thatr and l change slowly, a pseudo-stead
state for the autonomous (m& i5const) version of the equa
tions can be obtained by setting the left-hand side of E
~33! to zero. If the terms proportional tog are neglected for
simplicity, the steady state is easily shown to have the fo

mi ,st5m& i2
Vstci ,st/di

l /r 212/r 11/l
, ~36!

whereVst is the steady state growth rate. In the limit of lar
r (r @ l ) it reduces to

mi ,st'm& i2ci ,st

Vst

di
l , ~37!

which is consistent with Eq.~22! evaluated atx5 l .
The solution of the system of nonlinear equations defin

by Eqs.~36! and Eq.~31! ~with the left-hand side equal to
zero! was found numerically to obtain the steady-state val
of mi ,st and Xst. A linear stability analysis was then pe
formed. The stability of the steady states was investigated
finding the eigenvalues of the Jacobian matrix of the syste
~33! and ~31! for each steady state.

For a wide range of parameters, there exist three ste
states for which the crystal composition is close to the val
in the set~26!. In the calculations, the terms proportional
g were neglected, and the following simplifications we
made:p15p2 , b51, anddA5dB5dC51. With this choice,
the steady states for which the crystal is Ba rich and Sr
are symmetric in crystal composition and have exactly
same stability properties while the crystal composition in
third steady state is exactlyX* 50.5.

The steady stateX* 50.5 was unstable for all values o
the parameters considered. A typical stability diagram for
06620
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steady state for which the crystal is Ba rich~or Sr rich! is
shown in Fig. 7. The stability diagram indicates that t
steady state may become unstable via a Hopf bifurcation
the crystallite radius and the width of the diffusion bounda
layer @Eqs.~34! and ~35!# increase. This result suggests th
an autocatalytic oscillatory crystal growth may occur f
given bulk solution concentrations when the size of the cr
tallite exceeds a certain critical value.

Increasing the bulk solution concentrationsm& i generally
shifts the curves in Fig. 7 towards smaller values of the cr
tallite radius, thus decreasing the critical value of the cr
tallite radius for which the steady state loses its stability.

V. NUMERICAL SOLUTION OF THE REDUCED MODEL

The numerical solutions of the reduced model for t
growth of a spherical crystallite are illustrated in Fig.
Equations~31! and ~33! were solved using a fourth-orde
Runge-Kutta algorithm and the integral~34! was calculated
using the trapezoidal rule.

First, the dynamics of the system was studied for cons
bulk concentrations. For small crystallite radius, the syst
quickly settles into one of the stable steady states~either Ba
rich or Sr rich!. Switching from one steady state to another
possible as the crystal sizer and correspondingly the width
of the diffusion boundary layer increase slowly in time@Fig.
8~a!#. For large crystallite size, oscillatory solutions simil
to the solutions generated by the full PDE model are fou
~Figs. 8~b! and 8~c!#.

When the time dependence of the bulk concentrati
~16! is considered, transitions between the steady states
be obtained similarly to the ones observed for the P
model as the concentrations in the solution around the gr
ing crystallite evolve in time. The steady-state solution of t

FIG. 7. Linear stability diagram for the reduced model of
spherical crystal. The stability properties are shown for either on
the two steady states, whereX is close to 0 or 1. The dimensionles
parameter values arem& i53, dB5dC51, p15p250.20, L50.01,
a5b51, and g50. The notation of the stability regions is th
same as in Fig. 2.
6-9
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FIG. 8. Compositional profile generated b
the reduced model for a spherical crystal. T
bulk solution concentrations were kept consta
and the parameter values weredB51.127, dc

51.087, L50.01, a51.0, b50.9, andg52.5
31024. ~a! A change in the crystal compositio
occurs as the crystal grows larger as a result
the l (r ) dependence.m& A52.7, m& B53.6, m& C

52.7, p150.15, p250.11, «50.01, and r 0

50.25. ~b! Oscillatory solution corresponding to
the saddle region~analogous to that shown in Fig
7! for very large crystal size.m& A55.0, m& B53.1,
m& C52.9, p150.09, p250.13, l 51.0, and r 0

510. ~c! Solution that roughly corresponds to th
border region between the unstable focus and
saddle region~analogous to the UF andS regions
in Fig. 7!. The parameter values are the same
in ~b!, with the exception ofp250.15.
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system, in many cases, sensitively depends on the bulk s
tion concentrations and therefore on the location of the gr
ing crystallites in the gel column. Relatively small variatio
in the concentration values lead to qualitative changes in
type of solution, such as transition from a steady state c
acterized by a Sr-rich crystal composition to a steady s
where the crystal is Ba rich. Typically, only one such tran
tion can be numerically observed in the course of the cry
growth with the bulk concentrations time dependence
scribed by Eqs.~16!.

The value of the crystallite radius for which the stea
state loses its stability for the bulk solution concentratio
and the parameter values used here is greater than the ty
crystallite size observed in the experiments by about an o
of magnitude. However, switching between the stable ste
states, which results in an oscillatory zoning pattern, can
observed in the framework of the current model when sm
random fluctuations of the bulk concentrations of specie
the crystal nucleation site are considered.

VI. THE EFFECTS OF NOISE

The effect of small fluctuations in the solution concent
tions can be considered in the full PDE model by addin
stochastic term to the deterministic bulk concentrations~16!.

m& i~ t !5m& i 0~ t !1s ih i~ t !, ~38!

wherem& i 0(t) are the bulk concentrations of the salts in t
solution, h i(t) are the respective noise processes, and
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parameterss i describe the noise amplitude. The fluctuatio
in the solution concentrations around the crystallite may
sult, for example, from disturbances caused by the growth
other crystallites. From physical considerations, the no
processesh i(t) are expected to be approximately stationa
An Ornstein-Uhlenbeck noise@14# with zero mean and uni
variance is therefore used to simulate the aqueous conce
tion fluctuations for all species. The correlation timetn for
the noise processes is chosen significantly larger than
time step in the numerical calculations but much smaller th
the total crystal growth time. Since the electroneutrality
the solution can be maintained by the corresponding fluc
tions in the Na1 and Cl2 aqueous concentrations, the noi
processes for all three species of interest can be consid
relatively independent from each other.

When the stochastic bulk concentrations~38! are consid-
ered in the full PDE model~28!–~31! for the growth of a flat
crystal face, an interesting noise-induced effect can be
served when the parameters are chosen to correspond t
bistable region in the stability diagram of Fig. 3 but close
the instability line. Hence, deterministically, two stab
steady states coexist for the given choice of parameters
the presence of noise, however, fluctuations in the bulk c
centrations may induce the system to make a temporary t
sition from the bistable region of its phase space to the
stable region~Fig. 3 or 5!. This results in stochastically
induced oscillatory compositional patterns@Fig. 9~a!# charac-
terized by variations of the crystal composition over a wi
range.
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FIG. 9. The effect of noise on the full PDE model. For the parameter values chosen, two stable deterministic steady states c~a!
Oscillatory zoning compositional profile generated by the model for the case of a flat crystallite surface.m& i52, dB51.127,dC51.087,
p15p250.10,a50.89,b50.9, g52.531024, L50.007, andl 52. Independent Ornstein-Uhlenbeck noise processes with amplitudes i

50.3 and noise correlation timetn50.1 are used to simulate fluctuations in the bulk concentrations.~b! Ba-Sr-Ba type of zoning generate
by the model for the case of a spherical crystallite.Mi50.3M , dB51.127,dC51.087,p15p250.17,a50.89,b50.9, g52.531024, L
50.01, t5360 h, y515 cm, andr 050.5. Ornstein-Uhlenbeck noise parameters ares i50.3 andtn52.0. Relatively largetn may describe
fluctuations caused, for example, by the growth of other crystallites in the gel.
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The same type of noise-induced oscillations is also
served for the PDE model for the growth of a spherical cr
tallite @Fig. 9~b!#. The frequency of these noise-induce
events depends on the noise amplitude and correlation
as well as on how far the system is from the unstable reg
in its parameter space. Thus, for small supersaturations
the presence of relatively small noise, only one or two ra
crystal composition changes may occur during the cry
growth time. This results in the Ba-Sr, Sr-Ba, Ba-Sr-Ba,
Sr-Ba-Sr types of zoning~see Table I!. For higher supersatu
rations ~higher reservoir solution concentrations!, these
noise-induced concentration changes are more frequ
which results in noisy oscillatory zoning.

VII. CONCLUSION

The present model of oscillatory zoning in (Ba,Sr)S4
solid solution by an autocatalytic mechanism generates s
tions that are qualitatively consistent with the observations
the experimentally grown crystals. Consideration of t
physical parameters that determine the crystal gro
mechanism as well as the linear stability analysis of the
duced model for the growth of a spherical crystallite indic
that oscillatory zoning arises due to the distortion of the d
fusion concentration profiles in the solution caused by
increase in the crystallite size. The oscillatory zoning occ
when the concentrations of the salts in the solution are la
and the crystal growth proceeds at a fast enough rate to
pact the diffusion profiles in the solution around the cryst
lite. Fluctuations in the crystallite growth environment m
be a significant factor contributing to the oscillatory zoni
formation as they facilitate transitions between the ste
states of the dynamical reaction-diffusion system.
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APPENDIX

In this appendix we derive the differential equation for t
evolution of the kinetically defined composition at the su
face of a spherical crystal@Eq. ~10!#. We proceed in the spirit
of Ref. @15#, where a similar derivation was performed fo
the case of a flat interface. We consider an atomically rou
surface of a spherical crystallite, which is a binary solid s
lution with the end-membersB and C, in contact with a
supersaturated solution. If the number of the atomic units
elementsB and C in the crystallite surface arenB and nC ,
respectively, then the surface molar compositionX is defined
by

X5
nB

nB1nC
. ~A1!

Let us define the interface as a thin spherical shell, wh
width is of the order of the length scale of the crystal surfa
fluctuations. The characteristic radius of this shellr can be
used as the average radius of the crystallite. If the accre
ratesVB and VC are defined as the rates~length/time! of
crystal surface growth~or dissolution! due to the arrival~de-
parture! of the units ofB andC, respectively, then the incom
ing fluxes of the units ofB andC to the interface are given
by
6-11
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]nB
in

]t
5GB4pr 25VB

4pr 2

vB
,

]nC
in

]t
5GC4pr 25VC

4pr 2

vC
,

~A2!

whereGB andGC are the molecular fluxes~number of mo-
lecular units per unit area per unit time! towards the crystal-
lite surface andvB and vC are the atomic volumes of th
species. While the units are arriving from the solution to
outer surface of the interface shell, they are leaving the s
at its inner surface due to the motion of the shell associa
with the crystallite growth. The corresponding outgoing m
lecular flux is proportional to the surface compositionX and
the surface area:

]nB
out

]t
5X4pr 2K, ~A3!

where K is a coefficient of proportionality. In the stead
growth regime, when the number ofB units in the interface
shell does not change, the change in the number of incom
B units per unit time is balanced by the change in the num
of outcomingB units. At the same time, the surface comp
sition X corresponding to this steady growth regime may
defined kinetically@10# through the incoming fluxesGB and
GC as

Xst5
GB

GB1GC
. ~A4!

By comparing Eqs.~A3! and ~A4! it follows that K5GB
1GC and

]nB
out

]t
5X4pr 2S VB

vB
1

VC

vC
D . ~A5!

Let us now define the molecular density in the solid at
interface as

r5
1

XvB1~12X!vC
. ~A6!
L
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The number ofB units in the interface shell may be the
obtained as

nB54pr 2rXL, ~A7!

where the parameterL ~assumed constant! is the effective
width of the rough crystallite-solution interface defined as

L5
1

4pr 2 E
shell

u~rW8;t !d3rW8, ~A8!

where the functionu is equal to 1 if the pointr̄ 8 is located in
the solid and zero otherwise. The total change in the num
of B units in the interface is then

]nB

]t
5

]

]t
~4pr 2rXL!5L

]

]t
~rX!18prLrX

]r

]t
.

~A9!

By equating this expression to the difference between
incoming flux~A2! and the outgoing flux~A5! and using the
expression~A6! for r, one obtains

La

@X1~12X!a#2

dX

dt
1

2L

r

X

X1~12X!a

]r

]t

5VB2XS VB1
VC

a D , ~A10!

wherea5vC /vB . Taking into account that@16#

]r

]t
'VB1VC ~A11!

and thatL!r , the term containing 2L/r may be neglected
with respect to the last term on the right-hand side of E
~A10! and we recover equation~10!:

La
dX

dt
5@VB2X~VB1VC /a!#@X1~12X!a#2.

~A12!
of
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